
Supplementary Information

An Efficient Exact Quantum Algorithm for the Integer Square-free

Decomposition Problem

Jun Li, Xinhua Peng, Jiangfeng Du, Dieter Suter

I. GAUSS SUM EVALUATION

In the Gauss sum

G(a, χ) =

N−1∑
m=0

χN (m)e2πiam/N , (1)

the Jacobi symbol χN (m) is defined in terms of the Legendre symbols χpi(m) with respect to the

prime factors of N

χN (m) = χp1(m)α1χp2(m)α2 · · ·χpk(m)αk . (2)

Here, the Legendre symbol χpi(m) for a prime number pi is

χpi(m) =

0 if m ≡ 0(modpi);

+1 if m ̸≡ 0(modpi) andm = x2(modpi)for some integer x;

−1 otherwise.

(3)

If N is square–free, the Jacobi symbol is a primitive Dirichlet character modN . As shown in

Ref. [1], the Gauss sum then has the following important properties

G(a, χ) = εNχ(a)
√
N. (4)

If, in addition, (a,N) > 1, by definition of the Jacobi symbol we’ll have

G(a, χ) = 0. (5)

The general formula for the case that N is not square–free can be found in ref. [1] (p94, Exercise

12). Here, we only need the special case where (a,N) = 1. Then, the general formula evaluates to

G(a, χ) = 0. (6)

2

II. QUANTUM NETWORK FOR EXTENDED EUCLIDEAN ALGORITHM

In the main paper and methods, we point out that U1 (greatest common divisor computation)

1√
N

N−1∑
m=0

|m⟩ |N⟩ → 1√
N

N−1∑
m=0

|m⟩ |(m,N)⟩, (7)

and the key part of U2 (Jacobi symbol computation)

1√
φ(N)

∑
(m,N)=1

|m⟩ |1⟩ → 1√
φ(N)

∑
(m,N)=1

|m⟩ |χ(m)⟩. (8)

can be efficiently solved based on the famous extended Euclid algorithm. There is a variant of this

algorithm, called the binary extended Euclidean algorithm [2], which can be more conveniently

performed on a binary computer. The classical binary algorithms for GCD and Jacobi symbol are

presented in supplementary Fig. 1 and supplementary Fig. 2 respectively.

We now try to construct a quantum version of the binary algorithms. The classical algorithm

contains several conditional statements that translate into conditional control operations in the

quantum algorithm. For some of them auxiliary registers are needed. Take binary GCD algorithm

for example, corresponding to the conditional statements in supplementary Fig. 1, we add three

additional registers called “terminate or go on control register” (statement 7), “even or odd control

register” (statement 8, 9) and “comparison control register” (statement 10). The three kinds of

registers function as (1) “terminate or go on”: 0 ↔ v = 0 and 1 ↔ v > 0; (2) “even or odd”:

0 ↔ odd and 1 ↔ even; (3)”comparison”: 0 ↔ u < v and 1 ↔ u > v respectively. As illustrated in

supplementary Fig. 3, the complete algorithm requires seven registers. Details of the construction

are illustrated in supplementary Fig. 5. Like in the classical case, the quantum circuit complexity

for the GCD problem is of the order of O((logN)2).

Analogously, the quantum network for Jacobi symbol computation can be constructed. Note

that the conditional statements 5, 9, 12 in supplementary Fig. 2 are easy to implement, because

the modular properties of u and v with respect to 4 and 8 are only determined by their lowest

digits. Besides, in the network, if χ(m) = −1, we represent it by r = N − 1. The explicit network

for Jacobi symbol computation is illustrated in supplementary Fig. 4 and supplementary Fig. 6.

III. COMPLEXITY ESTIMATION OF THE ALGORITHM

In the complexity estimation of the algorithm (see methods), we made two arguments

3

1. for an odd integer N , if Ω proceeds to M2 with measurement result o and (o,N) is a square

number, then (o,N) must be the square part s2 of N ;

2. for an odd integerN , application of Ω will directly yield the square part ofN with probability

larger than (φ(N)/N)2.

Now we explain why the above arguments are valid.

A. Proof of argument 1

We now prove that at measurement M2, if (o,N) is a square number z2, then it must be equal

to s2. To prove this, set o = tz2 and N = xz2.

We need to evaluate G(tz2, χ). First it is rewritten as

G(tz2, χ) =
N−1∑
m=0

χ(m)e2πitz
2m/N =

∑
(m,N)=1

χ(m)e2πitm/x. (9)

Let m = kx+ j, where 0 ≤ k ≤ z2 − 1 and 0 ≤ j ≤ x− 1 such that (kx+ j,N) = 1. As

χ(kx+ j) =

(
kx+ j

xz2

)
=

(
kx+ j

x

)
= χx(j), (10)

there is

G(tz2, χ) =
∑

(j,N)=1

χx(j)e
2πitj/x ·

∑
(kx+j,N)=1

1

. (11)

Since for a certain j

∑
(kx+j,N)=1

1 =

∑
(j,x)=1

1 ·
∑

(kx+j,N)=1

1∑
(j,x)=1

1
=

φ(N)

φ(x)
, (12)

hence

G(tz2, χ) =
φ(N)

φ(x)

x−1∑
j=0

χx(j)e
2πitj/x =

φ(N)

φ(x)
G(t, χx). (13)

According to the Gauss sum formula, G(tz2, χ) ̸= 0 if and only if x is square-free. Then as the

square-free decomposition is unique, x must be r and z2 must be s2.

4

B. Proof of argument 2

For o = ts2 and (t,N) = 1, we then have

G(ts2, χ) =
φ(N)

φ(r)

r−1∑
j=0

χr(j)e
2πitj/r = χ(t)εr

√
r
φ(N)

φ(r)
. (14)

Now it is obvious that the probability of obtaining o such that o = ts2 and (t,N) = 1 is∑
(t,N)=1

∣∣G(ts2, χ)
∣∣2

φ(N)N
=

φ(r)rφ2(N)

φ(N)Nφ2(r)
=

φ(N)r

Nφ(r)
. (15)

As the probability that the algorithm not terminate at measurement M1 is (φ(N)/N), the proba-

bility that the algorithm proceeds to measurement M2 and gives the square part s2 would be

r

φ(r)

(
φ(N)

N

)2

≥
(
φ(N)

N

)2

(16)

IV. REFERENCES

[1] Cohen, H. Number Theory, Volume I: Tools and Diophantine Equations (Springer-Verlag, New York,

2007). 1

[2] Bach, E. & Shallit, J. Algorithmic Number Theory, Vol. 1: Efficient Algorithms (MIT Press, Cambridge,

1996).

2

5

Input : N and m.

Output: r, such that r=(m, N).

1. Set u=N, v=m, r=1;

2. While (u is even) and (v is even) do {

3. u=u/2;

4. v=v/2;

5. r=2r;

6. }

7. While v !"! do {

8. while (u is even) do u=u/2;

9. while (v is even) do v=v/2;

#"$ if u>v then u=(u-v)/2;

11. else v=(v-u)/2;

12. }

13. r=u · r;

14. Return r.

Algorithm – binary GCD algorithm.

Supplementary Figure S1: Classical binary GCD algorithm for computing greatest common divisor.

6

Input : N and m, N is odd, (m,N)=1.

Output: r, such that r= N(m).

1. Set u=N, v=m, r=1;

2. While u !"1 do {

3. While v is even do {

4. v=v/2;

5. if (u mod 8=3) or (u mod 8=5) then r=-r;

6. }

7. if v<u {

8. swap (u,v);

9. if (v mod 4=3) and (u mod 4=3) then r=-r;

10. }

11. v=(v-u)/2;

12. if (u mod 8=3) or (u mod 8=5) then r=-r;

13. }

14. Return r.

Algorithm – binary Jaocbi symbol algorithm.

Supplementary Figure S2: Classical binary algorithm for computing Jacobi symbol.

1

even or odd

control register

terminate or go

on control register

comparison

control register

Binary

GCD

Algorithm

m

(,)m N

0 n

0 n

0 n

0 n

0 n

0 n

m

r

N N

v

u

1

0 n

Binary

GCD

Algorithm

Supplementary Figure S3: Outline of the circuit for binary GCD algorithm. This represents the

quantum generalization of the classical binary GCD algorithm. Each horizontal line represents a quantum

register with n qubits. The first three lines labeled u, v, r represent the corresponding variables from the

classical algorithm, as represented in supplementary Fig. 1.

7

1

even or odd

control register

terminate or go

on control register

comparison

control register

Jacobi

Symbol

m

()N m

0 n

0 n

0 n

0 n

0 n

0 n

m

r

N N

v

u

1

0 n

Jacobi

Symbol

Supplementary Figure S4: Outline of the circuit for binary Jacobi symbol algorithm. This

represents the quantum generalization of the classical binary Jacobi symbol algorithm. Each horizontal line

represents a quantum register with n qubits. The first three lines labeled u, v, r represent the corresponding

variables from the classical algorithm, as represented in supplementary Fig. 2.

8

Binary

GCD

Algorithm

(log)O N

A0 n

even or odd

control register

terminate or go

on control register

comparison

control register

m

0 n

0 n

0 n

r

N

v

u

v=0?=

A =

comparison

control register

r

v

u

even or odd

control register

u is

even?

/2

v is

even?

/2

u=(u-v)/2

v=(v-u)/2

(log)O N (log)O N

u>v? u !"?

Supplementary Figure S5: Quantum circuit for binary GCD algorithm. The circuit is obtained

through complete translation from the classical binary GCD algorithm.

9

Jacobi

Symbol

(log)O N

A1

even or odd

control register

terminate or go

on control register

comparison

control register

m

0 n

0 n

0 n

r

N

v

u

u !1?
=

A =

comparison

control register

r

v

u

even or odd

control register

v is

even?

/2

v=(v-u)/2

(log)O N

u>v?

(u mod 8)=3 or (u mod 8)=5

r=N-r

swap(u,v)

(u mod 8)=3

or (u mod 8)=5

r=N-r

(u mod 4)=3

and

(v mod 4)=3

r=N-r

Supplementary Figure S6: Quantum circuit for binary Jacobi symbol algorithm. The circuit is

obtained through complete translation from the classical binary Jacobi symbol algorithm.

